CT6003  DSP Applications and Control Systems (2022/23)
Module specification  Module approved to run in 2022/23  
Module title  DSP Applications and Control Systems  
Module level  Honours (06)  
Credit rating for module  30  
School  School of Computing and Digital Media  
Total study hours  300  


Assessment components 


Running in 2022/23 (Please note that module timeslots are subject to change) 
No instances running in the year 
Module summary
This module provides students with a comprehensive knowledge of a range of digital signal processing techniques including ztransformation, Discrete Fourier Transform, Power Spectral Density and their applications in a variety of scientific fields such as Sonar and Radar, Telecommunications, Medical, Geology and Astronomy. It also provides fundamentals of control systems engineering concepts and develops knowledge and understanding of the various feedback control systems leading to the design of such systems mainly in continuous time but also touches upon discretetime systems.
Module aims
For Signal Processing this module aims to:
• Provide a through understanding of the fundamental concepts of discretetime signals and systems;
• Provide a nonmathematical approach to the applications of Digital Signal Processing;
• Provide an understanding and appropriate interpretation of the results of some of the complex DSP algorithms;
• Illustrate how complex algorithms may be implemented using a software approach or special DSP processors;
• Illustrate, using a system approach, a range of application areas where DSP has made most impact and an awareness of ethical issues related to each.
For Fundamentals of Control Systems the module aims to:
• Provide the necessary mathematical tools for analysing various control systems
• Provide the necessary mathematical tools for designing control systems, given a set of specifications
• Demonstrate the way in which these mathematical tools are applied in real applications for stabilising operation of unstable plants
Syllabus
Discrete time signals: Sampling continuous time signals, Sampling theorem, Nyquist rate, some standard discretetime signals (Sequences). Discretetime Systems: Systems defined by Difference equations, Moving Average (MA) systems, Autoregressive (AR) systems, Autoregressive MovingAverage (ARMA) Systems. Finite Impulse Response (FIR) Systems, Infinite Impulse Response (IIR) systems. Evaluation of the response of a discretetime linear timeinvariant system by convolution. Graphical evaluation of convolution. Frequency response of discretetime LTI systems. Steadystate sinusoidal response. Ztransform: definition, some standard ztransform pairs, properties of ztransforms. Ztransform of the general form of a difference equation, the transfer function of a discretetime LTI system, Unit impulse and Unit step responses of Discretetime LTI systems, Poles and Zeros, the zplane, stability of discretetime causal LTI systems.
Classification: Deterministic data, random data, real examples. Basic description properties (and the information they provide) of random data including, mean, variances, probability distribution function, autocorrelation, joint properties of random data, crosscorrelation function.
Discrete Fourier Transform: Fast Fourier Transform, Examples and applications. Frequency resolution.
General Applications: Poles / Zeros Diagrams, geometric evaluation of filters magnitude and phase responses.
Power Spectral Density function (PSD): CrossSpectral Density function, NonParametric PSD estimation, windowing. Parametric PSD estimation, Autoregressive (AR), Moving Average (MA), Autoregressive Moving Average (ARMA). Coherency. Applications of PSD in system identification.
Controllers, Control elements, Plant systems, Measurement (or sensor) elements.
Openloop, Forward control, Feedback control, Safety criteria. Examples of control systems.
Principles of feedback control:
Types of feedback, Proportional feedback, Integral feedback, Derivative feedback, PID feedback.
Stability criteria, RoothHorwitz Stability criteria, modelling of control systems,
Rootlocus design, Guidelines for sketching a root locus, Selecting root loci, Selecting gain, Dynamic compensation.
Learning and teaching
The majority of teaching and learning activities will be based on formal lectures, tutorials and laboratory work. A scientific simulator such as Matlab is used to provide students with a platform to initially understand various topics of the module. A series of laboratory exercises emphasise concepts covered lectures. The logbook (formative) and the formal report (summative) are to be submitted as the coursework component of the module assessment. The module is supported by a comprehensive web site providing students with all the necessary lecture material, laboratory handouts, study guides and selfassessment tests.
Learning outcomes
On successfully completing the work covered in this module, the student should be able to:
LO1. Understand principles, usefulness and application of DSP systems filters;
LO2. Provide analysis and design of basic DSP systems and filters;
LO3. Use DSP systems in realworld applications such as correlation and power spectral analysis;
LO4. Explain types of controllers commonly used for improving performance of feedback control systems;
LO5. Analyse behaviour of feedback control systems;
LO6. Apply commonly used design methods in designing compensator;
LO7. Acquire awareness of ethical issues particularly important in DSP and control systems engineering.
Assessment strategy
The module is assessed by:
Two coursework:
Coursework 1 (25%), (LO1, LO2, LO3 and LO7):
This coursework is set on the DSP Application part of the module that is covered in the first semester of the academic year. It is in two parts: Part one is based on fundamental concepts of discretetime systems analysis. Students once completed the theoretical section of this part, would then use the industry standard simulation environment (Matlab) and simulate behaviour of the system that they have produced its theoretical expectation. This would enhance student’s learning of various topics of the lectures. The second part of coursework 1 is based on a realworld application of DSP which would also have a theoretical and a simulation section. This would give students appreciation of how these theoretical concepts actually applied in realworld situations. Students are expected to maintain an uptodate logbook for the coursework which would help them in writing their summative individual report (due submitted by the end of the first semester as detailed in the assessment table below).
Coursework 2 (25%), (LO4, LO5, LO6 and LO7):
This coursework is set on the Control Systems Design and Analysis which is covered in the second semester of the academic year. Students are given an appropriate coursework handout which contains the theory and practical simulation of a feedback control system. In completing this coursework students would obtain deeper understanding of concepts of control systems and its effectiveness in modifying undesirable response of a system by means of introducing a controller in the feedforward path of the feedback control system. Students are expected to maintain an uptodate logbook for this coursework which would help them in writing their summative individual report (due submitted by the end of the second semester as detailed in the assessment table below).
In Addition to these course work components, deeper learning of students are assessed by the endofmodule closedbook 3hours unseen examination (summative) which takes place during the exam weeks at the end of the academic year. This assessment component carries the further 50% of the total module mark.
Bibliography
Essential/Highly recommended:
1. Ifeachor & Jervis (1993), “Digital Signal Processing  A Practical Approach”, AddisonWesley, ISBN 020154413X
2. Stranneby D., Walker W., (2004), “Digital Signal Processing and Applications”, 2nd Ed., Elsevier, ISBN 0750663448
3. Ogata (1996), “Modern Control Engineering”, 3rdEd., PrenticeHall, ISBN 0132613891
Background reading:
4. Smith S. K., (2003), “Digital Signal Processing  A Practical Guide for Engineers and Scientists”,Newnes, ISBN 075067444X
5. Balmer (1997), “Signals and systems  An Introductio”, 2nd Ed., PrenticeHall, ISBN 0134956729
6. Porat (1997), “A Course in Digital Signal Processing”, Wiley, ISBN 0471149616
7. Proakis, Rader, Ling & Nikias (1992), “Advanced Digital Signal Processing”, Maxwell Macmillan, ISBN 02946367X.
8. Stergiopoulos S., (Editor), (2009)ADVANCED SIGNAL PROCESSING, “Theory and Implementation for Sonar, Radar, and NonInvasive Medical Diagnostic Systems”,2nd Ed., CRC Press, ISBN 9781420062380
9. Stubberud & Williams (1990), “Feedback and control systems”, McGrawHill, ISBN 0070170479
10. Powell & EmamiNaeini, (1986), “Feedback Control of Dynamic Systems”, Addison Wesley, ISBN 0201115409
11. Golten & Verwer (1991), “Control System Design and Simulation”, McGrawHill, ISBN 0077074122
12. Leonard & Levine (1995), “Using MATLAB to Analyse and Design Control Systems”, 2nd Ed., Benjamin Cummings ISBN 0805321934