module specification

CY4054 - Cell Biology (for Herbal Medicinal Science) (2021/22)

Module specification Module approved to run in 2021/22
Module title Cell Biology (for Herbal Medicinal Science)
Module level Certificate (04)
Credit rating for module 15
School School of Human Sciences
Total study hours 150
115 hours Guided independent study
35 hours Scheduled learning & teaching activities
Assessment components
Type Weighting Qualifying mark Description
Coursework 50%   Essay (1500 words)
Coursework 50%   Unseen Examination (1 hour)
Running in 2021/22 No instances running in the year

Module summary

This is a module which provides students with an understanding of basic cell structures and an awareness of different cell types and relates the structure and activities of cell components to their functions and to cellular activities as a whole. The aims of this module are aligned with the qualification descriptors within the Quality Assurance Agency’s, Framework for Higher Education Qualification. This module aims to expose students to some of the key questions of cell biology concerning cell structure and intracellular activities; provide students with practical experience in a range of laboratory-based biological techniques; enhance students' ability to manage themselves and to develop organisational and analytical skills which are applicable to the workplace. This module aims to provide students with the qualities and transferable skills necessary for employment requiring the exercise of some personal responsibility.


The module covers: Cells and cell theory, the differences between prokaryotic and eukaryotic cells, the plasma membrane and organelles. Plasma membrane structure and functions; movement of molecules/ions across cell membranes; membrane junctions; signal transduction-hormonal/neural. Nucleus, cell cycle, mitosis and meiosis. Ribosomes, endoplasmic reticulum (ER), Golgi and lysosomes. Overview of protein synthesis and processing. Roles of smooth ER and lysosomes. Intracellular trafficking, cell communication, cellular junctions, cell adhesion and the extracellular matrix.
The cytoskeleton. The prokaryotic cell-structure/function, principles of cell membrane transport and cells and energy (mitochondria and chloroplasts). Overview of energy metabolism (including cytosolic) and electron transport.

Balance of independent study and scheduled teaching activity

Learning will be delivered by lectures, tutorials and practicals and through dedicated formative sessions
Students will be provided with the opportunity to acquire knowledge of the subject matter through teacher led activities in the form of lectures and problem-solving tutorial sessions and laboratory-based practical exercises. Writing skills will be enhanced through the production of a seen essay on a topical issue. The ability to undertake scientific and ethical appraisal of data will be encouraged through directed reading and tutorial discussions. Students will be expected to reflect upon taught material in order to demonstrate their understanding of molecular cell biology, a process assisted by use of the extensive module website
Lectures will utilize a variety of sources using powerpoint presentations to link content such as animations, video documentary and lecturer led demonstrations involving students.
Tutorials will consolidate the foundation learnt in lectures but will seek to link the content to the impact of contemporary cell biology on medicine and agriculture in a social and cultural context in the modern day environment.
Practicals  will allow students to perform a range of experiments safely, critically analyse their results and present these in an appropriate manner. These sessions will give students opportunity to develop and refine their critical, analytical and writing skills. Practicals will be both summative and formative.  The initial formative sessions will allow students to reflect on their practical skills and their ability to critically analyse experimental results and present these in an appropriate manner.
Weblearn-assisted sessions (where possible) will seek to link the module content to the impact of modern molecular cell biology on medicine and agriculture in a social and cultural context in the modern day environment but in a wider context than covered in the lectures in an aim to encourage self-directed learning.

Learning outcomes

On  successful completion of this module students will be able to:
1. Relate the structure and activities of cell components to their functions and to cellular activities as a whole, and have an appreciation of how cell fractionation is used to isolate these components.
2. Describe the different ways in which cells can divide and demonstrate an awareness of how genetic information is passed between generations.
3. Discuss how energy is generated and utilized within a cell.
4. Demonstrate an understanding of genotypic and phenotypic diversity and apply their knowledge of genetics to problem solving.
5. Perform an experiment accurately and safely as part of a team; report and interpret the results in an appropriate manner.
6. Demonstrate an awareness of ethical issues associated with the diagnosis and treatment of human genetic disorders within the broad human context.

Assessment strategy

To pass the module students need to achieve a minimum aggregate of 40%
The module will be assessed by means of a coursework component (50% of the overall mark) and a time-constrained, unseen examination consisting of short answer questions (50% of the overall mark). To pass the module students need to achieve a minimum aggregate of 40% overall.

Component                                        Learning outcomes
Coursework (1500 words)                  4
written exam (1 hour)                         1, 2, 6


Alberts B., Bray D., Lewis J., Raff M., Roberts K. and Watson J.D. (2009).  Molecular Biology of the Cell, (5th edition). Garland, London, New York.
René Fester Kratz. (2009). Molecular and Cell Biology for Dummies (1st edition).  Wiley Publishing.
Jones A., Reed R., and Weyers, J. (2007). Practical Skills in Biology. 4th edition Prentice Hall.
Campbell, N.A et al. (2017). Biology: A Global Approach, Global Edition.  11E. Pearson.