module specification

CY6010 - Advanced Inorganic Chemistry and Materials (2022/23)

Module specification Module approved to run in 2022/23
Module status DELETED (This module is no longer running)
Module title Advanced Inorganic Chemistry and Materials
Module level Honours (06)
Credit rating for module 30
School School of Human Sciences
Total study hours 300
15 hours Assessment Preparation / Delivery
215 hours Guided independent study
70 hours Scheduled learning & teaching activities
Assessment components
Type Weighting Qualifying mark Description
Coursework 25%   Presentation on a contemporary inorganic chemist and research topic (15 mins/ 500 words)
Unseen Examination 20%   Progress test one
In-Course Test 20%   Progress test two
Unseen Examination 35%   Examination
Running in 2022/23

(Please note that module timeslots are subject to change)
Period Campus Day Time Module Leader
Year North Thursday Afternoon

Module summary

The aims of this module are aligned with the qualification descriptors within the Quality Assurance Agency’s, Framework for Higher Education Qualifications.
This module aims to enable students to develop an understanding of the relation between structure, bonding and reactivity of organometallic and main group compounds. It also will show students how fundamental topics in inorganic chemistry can be applied to the interpretation of the roles of metal ions in biological systems. In addition, the module aims to develop students understanding of modern characterisation in solid state chemistry. Allied to this, the module will develop an awareness of the spectroscopic techniques available to an inorganic chemist and provide them with contexts that will allow them to develop problem solving skills in this area. Contemporary topics of importance in inorganic chemistry, such as supramolecular chemistry will also be introduced via a research exercise and the students practical skills will be enhanced by exposure to specific techniques from organometallic and bioinorganic chemistry.
In addition the module aims to provide students with the qualities and transferable skills necessary for employment. They will be required to exercise initiative and personal responsibility, as well as decision-making in complex and unpredictable contexts. Finally the module aim to provide students with the learning ability needed to undertake appropriate further training of a professional or equivalent nature.

Prior learning requirements



Structure, bonding, and synthesis of compounds of transition metals in low oxidation states with π-acceptor ligands: nomenclature, the 18 electron rule; metal carbonyls, carbonylates, carbenes, dihyrogen complexes, silane complexes, clusters, metal-metal bonds, vibrational spectra; complexes with alkenes, alkynes, allyls, cyclopentadienes and arenes.  Fluxionality in organometallic compounds. C-H activation by transition metal organometallics. Catalytic cycles involving organometallic systems that reaction types common in organometallic chemistry.
Metals in biological redox reactions: the redox chemistry of metal complexes and metalloproteins; a study of cytochromes and iron-sulfur proteins involved in mitochondrial oxidative pathways.
Oxygen carriers and oxygen transport proteins: aspects of the biological chemistry of haemoglobin and myoglobin; synthetic models for oxygen binding and oxygen-binding haemoproteins.
Supramolecular chemistry and the advent of molecular machines such as rotaxanes and catenanes along with host guest chemistry.
Main group chemistry: the chemistry of boron, silicon, phosphorus and sulfur containing compounds.
Spectroscopic techniques. The underlying concepts of NMR, IR, UV, and Raman spectroscopies. X-ray diffraction. Electron microscopy. Applications of these techniques in both the solution and solid states. LO1,LO2,LO3,LO4,LO5,LO6

Balance of independent study and scheduled teaching activity

The module is delivered through a range of different mechanisms including practical work, workshops, tutorials, lectures, on-line material and directed course work.
Teaching and learning sessions consist of lectures, tutorials and practicals.
Lectures (40h) are used to deliver subject material and are linked to tutorials (22h) and practical sessions (4h).  Tutorials are utilized to develop problem solving skills throughout the module
Students will be expected to reflect on the learning experience and develop their own understanding of the topics covered (115h). Students also expected to work on their presentation (54h).
The module is supported by a website on WebLearn which includes a number of electronic learning aids, with a particular emphasis on consolidation of previous learning. Students would be expected to use the site for assisted study (65h)

Learning outcomes

On successful completion of this module, students are expected to:
1. apply an understanding of coordination chemistry to biological systems
2. explain how spectroscopic techniques are important in the understanding of structure, bonding and reactivity of organometallic and other compounds including p-block compounds.
3. describe the fundamental principles and concepts in the field of materials chemistry and supramolecular chemistry
4. utilize the scientific literature to research a contemporary topic in inorganic chemistry
5. present in both oral and written forms novel ideas and concepts from a field of modern inorganic chemistry
6. apply an understanding of spectroscopic techniques to solve problems relevant to inorganic chemistry

Assessment strategy

This module will be assessed by a series of time-constrained progress tests and an examination, and combined oral and poster presentation based on contemporary inorganic chemistry research. The progress test will provide both formative and summative assessment, the examination summative assessment alone.
To pass the module, students need to achieve a minimum aggregate mark of 40%.  There will be an attendance requirement for the practical sessions. If the module is passed on reassessment, then the maximum mark awarded will be 40%


Core Text: Cotton, F. A., Wilkinson, G., Murillo, C. A. (1999) Advanced Inorganic Chemistry, 6th Edition. Wiley

Other Texts: Smart, L. E., Moore, E. A. (2005) Solid State Chemistry: An Introduction, 4th Edition. Taylor & Francis.
West, A. R. (2014) Solid State Chemistry and its Applications. London: John Wiley & Sons.
Weller, M. T. (1994) Inorganic Materials Chemistry, OUP 23, Oxford University Press.
Crabtree, R. H. (2015) The Organometallic Chemistry of the Transition Metals. 6th Edition. Wiley and Sons
Hill, A. F. (2002) Organotransition Metal Chemistry. Royal Society of Chemistry
Brisdon, A. K. (2001) Inorganic Spectroscopic Methods, OUP 62, Oxford University Press
Lippard, S. J., Berg, J. M. (1994) Principles of Bioinorganic Chemistry, University Science Books, California
Norman, N. C. (1997) Periodicity and the s- and p-Block Elements, OUP 51, Oxford University Press
Massey, A. G. (2000) Main Group Chemistry. 2nd Edition. Wiley and Sons

Journals: Inorganic Chemistry, Dalton Transactions, Chemical Science


Electronic Databases:

Social Media Sources @londonmetcps @roychemsoc