module specification

CY6059 - Advanced Physical Chemistry (2024/25)

Module specification Module approved to run in 2024/25
Module title Advanced Physical Chemistry
Module level Honours (06)
Credit rating for module 15
School School of Human Sciences
Total study hours 150
 
30 hours Assessment Preparation / Delivery
84 hours Guided independent study
36 hours Scheduled learning & teaching activities
Assessment components
Type Weighting Qualifying mark Description
Coursework 50%   Interpretation exercises
Unseen Examination 50%   Unseen written exam
Running in 2024/25

(Please note that module timeslots are subject to change)
Period Campus Day Time Module Leader
Autumn semester North Friday Morning

Module summary

This module will enhance students’ knowledge and understanding of the major areas of physical chemistry for the life sciences and further develop their ability to model physicochemical processes mathematically in order to be able to predict the behaviour of chemical systems. The module will examine key theories and applications of thermodynamics, the kinetics of life processes, quantum theory, heterogeneous catalysis and molecular spectroscopy.

Prior learning requirements

CY5010

Syllabus

Thermodynamics:
Revision of statistical thermodynamics; the measurement of entropies (the molecular interpretation of the Second and Third Laws, Boltzmann relation linking entropy and disorder, residual entropy and entropy changes accompanying spontaneous chemical reactions); Gibbs free energy criteria for irreversible processes; chemical potential; derivation of the Clapeyron and Clausius-Clapeyron equations and the application of these equations to chemical equilibrium both qualitatively and quantitatively; enthalpy changes at the triple point using isotherms. LO1

 

Chemical kinetics of complex biochemical processes:
Revision of rates of reactions, rate laws, the steady state approximation and its application to mechanisms (elementary reactions, consecutive reactions). The Michaelis-Menten mechanism of enzyme catalysis, the analysis of complex mechanisms and the catalytic efficiency of enzymes. Enzyme inhibition mechanisms (competitive, non-competitive and uncompetitive), inhibitor efficiency, Lineweaver-Burke analysis. LO3,LO4

Microscopic systems and quantization:
The principles of quantum theory (atomic and molecular spectra, wave-particle duality, the uncertainty principle, the Schrödinger equation), application of quantum theory (particle motion in one dimension box and on a ring), hydrogenic atoms (permitted energy levels, radial distribution functions, spherical harmonics, atomic orbitals). Introduction to the application of quantum theory in computational chemistry. LO5

Heterogeneous catalysis and macromolecules:
Revision of adsorption processes and isotherms; derivation of fractional surface coverage expressions for competitive and dissociative molecular adsorption; Langmuir-Hinshelwood and Eley-Rideal mechanisms of bimolecular surface reactions; variation in unimolecular decomposition reaction rates with pressure. Properties and applications of natural and synthetic macromolecules and aggregates. LO2,LO3

Spectroscopy and Photochemistry:
General features of electronic, vibrational and rotational spectroscopy; selection rules; spectral broadening effects; anharmonicity; Rayleigh and Raman scattering; photochemical reactions (the Jablonski diagram, kinetics of excited state decay, fluorescence quenching, resonance energy transfer). LO3,LO6

Balance of independent study and scheduled teaching activity

Acquisition of knowledge of the subject matter of this module will be promoted through lecturer-led lectures (22 hours) and tutorials (11 hours); directed web-based learning and through the guided use of student-centred learning resources. Selfmanaged time and private study should be spread out over the whole semester. Additional exam preparation will be facilitated through a revision session (3 h). There will also be weekly drop-in sessions, of one hour duration, which students can make use of in order to consolidate their understanding of the subject matter.

Learning outcomes

On successful completion of this module students will be able to:
1. Make a critical evaluation of entropy changes accompanying chemical reactions using thermodynamic methods
2. Evaluate the structural differences of selected macromolecules and relate this to their functions
3. Analyse the mechanism of a heterogeneous, photochemical or enzymatic reaction, use this to produce a sequence of elementary steps and provide a mathematical model for the rate of reaction
4. Critically assess and compare complex biochemical inhibition processes
5. Derive energy levels (eigenvalues) for a given system using quantum theory
6. Predict and interpret spectroscopic measurements and photochemical processes from the quantisation of energy levels

Bibliography

Core text: Atkins, P., De Paula, J. and Keeler, J. (2017) Physical Chemistry, 11th Edition, Oxford University Press

Other texts: Atkins, P., and De Paula, J. (2011) Physical Chemistry for the Life Sciences, 2nd Edition, Oxford
Chang, R. and Thoman Jr., J. W. (2014) Physical Chemistry for the Chemical Sciences, University Sciences Books
Silbey, R. J., Alberty, R. A., and Bawendi, M. G. (2004) Physical Chemistry, 4th Edition, Wiley
Dogge, G., Cockett, M. (2012) Maths for Chemists, 2nd Edition, Royal Society of Chemistry Publishing
Hollas, J. M. (2003) Modern Spectroscopy: 4th Edition, Wiley
Atkins, P. W. Friedman, R.S. (2010) Molecular Quantum Mechanics, 5th Edition, Oxford
Szabo, A., Ostlund, N. S. (1989) Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, McGraw-Hill
House, J. E. (2004) Fundamentals of Quantum Chemistry, 2nd Edition, Elsevier Academic Press
Kamer, P. C. J., Vogt, D., Thybaut, J. (2017) Contemporary Catalysis: Science, Technology, and Applications, Royal Society of Chemistry Publishing

Websites: Specific links to websites will be given on Weblearn including links from www.khanacademy.org