MA4005 - Logic and Mathematical Techniques (2025/26)
Module specification | Module approved to run in 2025/26 | ||||||||||||||||||||
Module title | Logic and Mathematical Techniques | ||||||||||||||||||||
Module level | Certificate (04) | ||||||||||||||||||||
Credit rating for module | 30 | ||||||||||||||||||||
School | School of Computing and Digital Media | ||||||||||||||||||||
Total study hours | 300 | ||||||||||||||||||||
|
|||||||||||||||||||||
Assessment components |
|
||||||||||||||||||||
Running in 2025/26(Please note that module timeslots are subject to change) |
|
Module summary
This module develops a range of mathematical techniques including set theory, logic, relations and functions, algebra, differentiation and integration. The techniques provide the foundation for further study of mathematics and related applications in Computer Science, Computer Games Programming, Computer Systems Engineering and Robotics and Electronics and Internet of Things.
Prior learning requirements
None.
Syllabus
• Propositional Logic: representation of simple verbal arguments; truth-tables; logical equivalence, validity and consequence, logic circuits. Predicate logic.
• Propositional Logic: representation of simple verbal arguments; truth-tables; logical equivalence, validity and consequence, logic circuits. Predicate logic.
• Algorithms: understanding how problems can be solved systematically, plan their solutions and write them in form of algorithms (e.g. Euclid's Algorithm).
• Combinatorics: Combinations, permutation and probability.
• Relations & Functions: Relations: representations of relations (matrix and digraph); equivalence relations; partitions; partial orderings. Functions: ways of defining functions; composition; inverse functions.
• Algebra: Basic numbers, indices, brackets; Manipulation of algebraic expressions; Linear and quadratic equations.
• Functions. Graphs; Exponential function and natural logarithm; Trigonometric functions. Differentiation of basic Polynomial, exponential, Logarithms and Trigonometrical functions; Stationary points. Indefinite and definite integrals; Area under a curve. Application to kinematics.
• Matrices Representation of the co-ordinate plane. Use of matrices to represent the vertices of a plane figure. Simple transformations. Vector Algebra. Matrix Algebra. Examples of applications to technology and computing will be provided.
Balance of independent study and scheduled teaching activity
This module will be delivered through a mixture of lectures and tutorials. The lectures will develop theory, explain the methods and techniques and demonstrate them by going through examples. The tutorials will provide students with the opportunity of reviewing their lecture notes and working through the problems designed for their practice, which will underpin the skills and techniques demonstrated in the lectures. Students will be encouraged to construct valid and precise mathematical arguments and will be expected to produce solutions using appropriate notational and stylistic conventions. Self-study exercises will enable students to monitor their own progress.
A set of lecture notes will be provided to students and answers for exercise questions will be put on the VLE.
Blended learning is incorporated by using online resources as a medium for communication (both peer and tutor-led) and will also provide additional materials to stimulate the student interest and broaden their horizons.
Learning outcomes
After successful completion of this module students should be able to:
LO1 Understand the meaning of mathematical definition of relations and to determine which relations are equivalence relations.
LO2 Understand the meaning of mathematical definitions of sets/propositions and perform set/logic operations.
LO3 Demonstrate skill in formulating, manipulating and solving algebraic equations.
LO4 Use functions appropriately and identify their graphical equivalents.
LO5 Demonstrate skills in, and application of, the techniques of vector algebra,
Differentiation and integration in technology and computing
Bibliography
https://rl.talis.com/3/londonmet/lists/B7842A8A-4389-42D0-9813-D3F727433611.html?lang=en-GB
Core Text:
Discrete Mathematics for Computing, Rod Haggarty (2002), Addison Wesley.
Mathematics for engineers (4 ed), Anthony Croft, Robert Davison (2015), Pearson Prentice Hall, http://catalogue.londonmet.ac.uk/record=b1792386~S1
Other Texts:
Logic and design: in art, science & mathematics, Krome Barratt (1989), Herbert Press
Logic: a very short introduction, Graham Priest (2000), Oxford University Press
Journals:
Mathematical problems in engineering
http://catalogue.londonmet.ac.uk/record=b1932071~S1
Journal of applied mathematics
http://catalogue.londonmet.ac.uk/record=b1931257~S1
Websites
University Library website:
https://student.londonmet.ac.uk/library/
Subject guides and research support:
https://student.londonmet.ac.uk/library/subject
Electronic Databases
IEEE Xplore / IET Digital Library (IEL):
https://ieeexplore.ieee.org/Xplore/home.jsp
Wiley Online Library:
https://0-www-onlinelibrary-wiley-com.emu.londonmet.ac.uk/
Social Media Sources
YouTube: https://www.youtube.com/