CC5063 - Data Analytics (2024/25)
Module specification | Module approved to run in 2024/25 | ||||||||||||
Module title | Data Analytics | ||||||||||||
Module level | Intermediate (05) | ||||||||||||
Credit rating for module | 15 | ||||||||||||
School | School of Computing and Digital Media | ||||||||||||
Total study hours | 150 | ||||||||||||
|
|||||||||||||
Assessment components |
|
||||||||||||
Running in 2024/25(Please note that module timeslots are subject to change) |
|
Module summary
This module introduces fundamental concepts and techniques of data analytics. The module covers descriptive statistics for exploratory data analysis, correlation analysis and linear regression model. A substantial practical element is integrated into the module to enable students to apply data analytics techniques for real world data analytical problems.
The aims of this module are to enable students to:
• gain a thorough understanding of fundamental concepts of data analytics
• acquire knowledge of descriptive statistics, correlation analysis, and linear regression analysis
• have knowledge of and gain understanding of the data analytics lifecycle
• develop practical data analytical skills to resolve real world data analytical problems
Syllabus
• Fundamental concepts in data analytics
- Theories and hypotheses
- Population and samples
- Relationships and causality
- Data sets
- Reliability and validity
• Numeric and categorical variable analysis and visualisation with descriptive statistics
• Examining relationships between interval data with correlation analysis
• Modelling relationships of multiple variables with linear regression
• Data analytics lifecycle
• Data analytics case study
Learning OUtcomes LO1 - LO4
Balance of independent study and scheduled teaching activity
Topics will be introduced through the medium of formal lectures, supported by tutorial and workshop sessions, and blended learning as follows:
- Lecture (1 hour / week):
Introduction of the major topics identified in the syllabus, plus practical exercises, directed reading and other further studies
- Workshop (2 hour / week):
Practical skills will be further developed through lab-based workshops. Specific practical exercises are set to support students' development of skills with powerful interactive data analysis package.
- Blended learning:
Using the University’s VLE and online tools to provide deliver content, assessment and feedback, to encourage active learning, and to enhance student engagement and learning experience.
Students will be expected and encouraged to produce reflective commentaries on the learning activities and tasks that they carry out to complete their work.
Learning outcomes
On successful completion of this module the student should be able to:
[LO1] demonstrate a clear understanding of the key fundamental concepts of data analytics
[LO2] gain good knowledge and proficiency in data analytics with descriptive statistics, correlation analysis, and linear regression analysis
[LO3] gain a clear understanding of the lifecycle of data analytics
[LO4] apply data analytics knowledge and practical skills to solve unstructured/semi-structured real-world problems
Bibliography
Reading list available at: http://https://rl.talis.com/3/londonmet/lists/F2D5BF4B-B146-18C2-370A-5316086446F9.html?lang=en