module specification

FE5001 - Econometrics and Financial Modelling (2020/21)

Module specification Module approved to run in 2020/21
Module title Econometrics and Financial Modelling
Module level Intermediate (05)
Credit rating for module 30
School Guildhall School of Business and Law
Total study hours 300
 
9 hours Assessment Preparation / Delivery
210 hours Guided independent study
81 hours Scheduled learning & teaching activities
Assessment components
Type Weighting Qualifying mark Description
Coursework 50%   1500 words individual coursework
Coursework 50%   2000 words individual coursework
Running in 2020/21
Period Campus Day Time Module Leader
Year North Thursday Morning

Module summary

The first half of this module focuses on Econometrics, and deals with the theory and application of the Classical Linear Regression Model (CLRM), providing a firm grounding in the theory of Ordinary Least Squares (OLS) and an appreciation of its limitations. It provides a theoretical understanding of the causes, consequences and detection of, and remedies for, the violation of the assumptions of the classical linear regression model.  It develops knowledge and skills to use standard statistical/econometric software package (e.g. EViews) and apply techniques to economics, finance and banking problems and models.

The second half of this module focuses on Financial Modelling, and involves the use of EViews and Excel and other relevant software to construct financial models including valuation and portfolio models.

The module provides students with the knowledge and skills to design, undertake, and evaluate empirical work within economics, finance and banking.

Students are encouraged to reflect and draw on their diverse socio-cultural
backgrounds and experiences.

Equality is promoted by treating everyone with equal dignity and worth, while also raising aspirations and supporting achievement for people with diverse requirements, entitlements and backgrounds

A range of transferable and subject specific skills are developed, in particular: self- assessment and reflection; peer assessment; written; IT; applied analysis; subject research; problem solving; data and quantitative; analytical and critical thinking.

Syllabus

Review of statistics:  probability distributions, sampling theory, estimation, confidence intervals, hypothesis testing and applications to economic, finance and banking. LO1
Correlation and regression analysis: applications to economics and finance. LO1
Introduction to Econometrics: economic theory versus empirics. LO1
The Classical Linear Regression Model: Ordinary Least Squares estimation and assumptions. LO1

Linear regression model estimation and hypothesis testing LO2
Multiple Regression Model, estimation and hypothesis testing. LO2
Functional form and dummy variables LO2
Violations of the assumptions of the classical linear regression model: causes, consequences, tests and solutions for multi-collinearity and misspecification errors. LO2

Use IT to access sources of relevant economic and financial information, and transform into usable information relevant to the analysis of economics, finance and banking. LO2
Development of intermediate knowledge of spreadsheets, using workbooks and solving problems by analysing data. Using and interpreting the output of dedicated econometric software (e.g. EViews), conducting appropriate econometric tests, and writing reports analysing econometric problems. LO2


Financial Modelling involving the implementation of financial models in Excel. Basic and advanced models in the areas of corporate finance such as valuation models for securities, Optimal vale of investment portfolios, pricing options, and measurement of value at risk (VAR) in Excel spreadsheets. LO3

Examination of the technical aspects of EViews and Excel as tools of Financial Modelling for data analysis and measuring value of financial assets at risk exposure. LO4

 

Balance of independent study and scheduled teaching activity

Learning consists of ‘formal’ class room learning directed by the teaching team, and reflective independent learning. The formal learning involves lectures, seminars and computer-workshops while the independent learning consists of reading of the course material, working on weekly exercises including computing assignments using software (for example EViews) and coursework that involves undertaking econometric analysis and writing a report, and preparing for the final written exam.

The module is delivered in a three-hour session each week which comprises a two-hour lecture, and a one-hour seminar or a one-hour computer workshop. In the seminar students present their solution(s) to the problems set and raise questions on the lecture material. In the computer workshop students undertake empirical analysis using IT software. The seminar and the workshop provide opportunities for active and reflective learning, and also formative feedback. A virtual learning environment (WebLearn) supports blended learning by providing module handbook, lecture notes, seminar materials, IT workshop exercises, past test and exam papers with guideline answers, coursework brief with assessment and grading criteria, EViews videos and other learning material.

All activities provide students with knowledge and understanding of econometrics, statistics and financial modelling. The weekly exercises and the coursework give students such diverse skills as working independently, problem solving, writing concisely and clearly, retrieving secondary data from various online sources and describing and exploring them using econometric software and spreadsheets.

Professional and transferable skills are developed in lectures and seminars, and through independent directed learning and assessment. Skills development is enhanced through working cooperatively solving economic problems.

Initiative and independence is developed progressively through the module such that students are required to take greater responsibility of their work.

Learning outcomes

On successful completion of this module students will be able to:

1.  Demonstrate a broad knowledge and a systematic understanding of statistics;
correlation and linear regression analysis; hypothesis testing and application to
economics, finance and banking.

2. Produce evidence, collect, analyse and interpret data and explain regression results; test hypotheses; evaluate regression models and use dedicated statistical and econometric software such as Excel and EViews.

3. Employ financial Models including security valuation, portfolio selection and pricing options using EViews, Excel and other relevant software.

4. Apply theoretical and practical knowledge for the analysis of financial data and risk management.

Assessment strategy

The summative assessments and feedback practices are informed by reflection, consideration of professional practice, and subject-specific knowledge and educational scholarship.

There are TWO summative assessments consisting of an individual coursework (1500 words econometric report) in week 15 assessing learning outcomes 1 and 2, and an individual coursework (2,000 words) assessing learning outcomes 3 and 4 in relation to financial modelling.

Through the summative assessments, students are provided with opportunities to develop an understanding of, and the necessary skills to demonstrate, good academic practice.

The first coursework is an independent piece of work requiring the application of knowledge gained on the module. The coursework is based on a computing assignment that applies econometric and other quantitative methods to a particular economic/ finance/ banking model using dedicated econometric software. Students write a report and are assessed on their knowledge and skills in designing, executing and evaluating empirical work within a range of economic and financial contexts.

A feed-forward strategy is used to provide early feedback to students to improve their final submission. Use of the feedforward strategy and class discussion of a detailed grading and assessment criteria create an opportunity for dialogue between students and staff and promote shared understanding of the basis on which academic judgements are made.

The second coursework develops students’ ability in financial modelling. Detailed information on requirements and guidance will be delivered within the teaching weeks. This coursework is due in week 27. Students will receive timely, constructive and developmental feedback.

The coursework assess the student’s knowledge and understanding of quantitative analysis and methods applied to economics, finance and banking. Subject research, written communication; data and quantitative analysis; critical thinking; problem solving and IT skills and ability to apply specialist econometric and financial modelling software packages such as  Eviews/Excel/SPSS are developed and assessed.

During seminars students receive formative feedback on their knowledge and understanding of quantitative techniques and analysis by working though exercises and problems which they prepare before the session. This preparation and feedback provides support for students when they later tackle problems set in summative assessments.

Through the summative assessments, students are provided with opportunities to develop an understanding of, and the necessary skills to demonstrate, good academic practice. Written communication, analytical, critical thinking, problem solving, quantitative and interpreting skills are assessed.

All the information about processes of marking and moderating marks, timing of assessments and deadlines for feedback provision are clearly articulated in the module boklet and communicated to students through Weblearn as well.

Bibliography

Core Textbook:

1.  Asteriou, D and Hall S G (2016). Applied econometrics, 3rd ed., Palgrave Macmillan
     This is an E-BOOK. Hard copies are available at Aldgate 330.015195 AST
2.  Benninga, S. (2014) Financial Modelling 4th Edition, MIT Press, London.
     Aldgate 332.015118 BEN
3.  Brooks, C. (2014) Introductory Econometrics for Finance, 3rd Edition, Cambridge
    University Press, Cambridge. Earlier editions are available as E-BOOK and hard
    copies at Aldgate 332.015118 BRO

Additional Textbooks:

4.  Barrow, M. (2013) Statistics for economics, accounting and business studies, 6th
     ed., FT Prentice Hall. This is an E-BOOK. Hard copies available at Holloway Rd and
     Aldgate 519.502433 BAR
5. Bradley, T. (2007). Essential statistics for economics, business and management, John Wiley & Sons Ltd. Aldgate 519.5 BRA
6. Dougherty, C. (2016). Introduction to econometrics, 5th edition, Oxford.
    Aldgate 330.015195 DOU    
7.  Gujarati, D. N. (2015). Econometrics by example, 2nd ed., Palgrave MacMillan
     This is an E-BOOK. Hard copies of earlier editions are available at Aldgate
     330.015195 GUJ
8.  Gujarati, D.N. and Porter D. (2010). Essentials of econometrics, 4th ed., McGraw
     Hill. Aldgate 330.015195 GUJ
9.  Gujarati, D.N. and Porter D. (2014). Basic econometrics, 6th ed., McGraw Hill
     Earlier editions are available at Aldgate 330.015195 GUJ
10. Keller, G. (2012). Managerial statistics, 9th ed., South Western Cengage learning
11. Oakshott, Les (2016). Essential quantitative methods for business, management
      and finance, 6th ed. Palgrave Macmillan. This is also available as an E-Book. Hard
       copies are available at   658.0015195 OAK Holloway Rd and Aldgate
12. Waters, Donald (2011) Quantitative methods for business, 5th ed., FT Prentice Hall,
      This book is available as E-BOOK.
13. Wooldridge, J. M. (2016). Introduction to econometrics, 4th ed., South Western
     College Publishing. This is an E-BOOK. Earlier editions are available as hard copies
     at Aldgate 330.015195 WOO